Quantifying the effect of local interconnects on on-chip power distribution

نویسندگان

  • Peirong Ji
  • Emre Salman
چکیده

Existing methods to analyze and optimize on-chip power distribution networks typically focus only on global power network modeled as a two-dimensional mesh. In practice, current is supplied to switching transistors through a local power network at the lower metal layers. The local power network is connected to a global network through a stack of vias. The effect of these vias and the resistance of the local power network are typically ignored when optimizing a power network and placing decoupling capacitors. By modeling the power distribution network as a three-dimensional mesh, the error due to ignoring via and local interconnect resistances is quantified. It is demonstrated that ignoring the local power network and vias can both underestimate (by up to 45%) or overestimate (by up to 50%) the effective resistance of a power distribution network. The error depends upon multiple parameters such as the width of local and global power lines and via resistance. A design space is also generated to indicate the valid width of local and global power lines where the target resistance is satisfied. It is shown that a wider global network can be used to obtain a narrower local network, providing additional flexibility in the physical design process since routability is an important concern at lower metal layers. At high via resistances, however, this approach causes significant increase in the width of a global power network, indicating the growing significance of local power network and vias. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical interconnects revitalized

Models of electrical interconnects, including inductance and skin effect, are reviewed. The models are used for estimating the performance of electrical interconnects, particularly related to delays, data rates, and power consumption for off-chip and on-chip interconnects and for clock distribution. It is demonstrated that correctly utilized, electrical interconnects do not severely limit chip ...

متن کامل

Trends of On-Chip Interconnects in Deep Sub-Micron VLSI

This paper discusses propagation delay error, transient response, and power consumption distribution due to inductive effects in optimal buffered on-chip interconnects. Inductive effect is said to be important to consider in deep submicron (DSM) VLSI design. However, study shows that the effect decreases and can be neglected in next technology nodes for such conditions. key words: on-chip inter...

متن کامل

High-Speed Ternary Half adder based on GNRFET

Superior electronic properties of graphene make it a substitute candidate for beyond-CMOSnanoelectronics in electronic devices such as the field-effect transistors (FETs), tunnel barriers, andquantum dots. The armchair-edge graphene nanoribbons (AGNRs), which have semiconductor behavior,are used to design the digital circuits. This paper presents a new design of ternary half a...

متن کامل

Overview of the Use of Copper Interconnects in the Semiconductor Industry

5 Damascene Process 5 History of Copper Interconnects 6 Damascene Process Steps 6 State of the Art in ECD 6 Electrochemical Deposition (ECD) 8 Basic ECD 11 V-I Curves 12 Uniformity 14 Boundary Layer 14 Conductivity 15 Bath Chemistry and Plating Waveforms 16 Superfilling 17 Morphology 17 A Look to the Future c o n t e n t s Interconnects in integrated circuits distribute clock and other signals ...

متن کامل

High-Speed Penternary Inverter Gate Using GNRFET

This paper introduces a new design of penternary inverter gate based on graphene nanoribbon field effect transistor (GNRFET). The penternary logic is one of Multiple-valued logic (MVL) circuits which are the best substitute for binary logic because of its low power-delay product (PDP) resulting from reduced complexity of interconnects and chip area. GNRFET is preferred over Si-MOSFET for circui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Journal

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2015